Skip to main content

Climate Scenarios, Impacts and Modelling (CSIM) Lab

The Climate Scenarios, Impacts and Modelling (CSIM) Lab has been an active space for computational climate science research and innovation at Concordia since 2007. The CSIM lab is home to a state-of-the-art NSERC-funded climate modelling facility, and hosts a dynamic group of postdocs and graduate students working on research projects that aim to improve our understanding of the science of climate change, its impacts on human and environmental systems, and how best to respond to the challenge of climate mitigation. Concordia’s CSIM lab has current collaborations with researchers at the Ouranos Research Consortium, McGill’s Economics for the Anthropocene program, and the Sustainable Canada Dialogues network. They have also worked closely with the Human Impact Lab to develop the climate clock, a real-time visualization of the time remaining until we reach 1.5 and 2°C of global temperature change.

zachary patterson

Damon Matthews (Ph.D. University of Victoria, 2004)

Professor, Department of Geography Planning & Environment
BlueSky: @damonmatthews.bsky.social

Dr. Damon Matthews is Professor  in the Department of Geography Planning and Environment. He obtained a B.Sc. in Environmental Science from Simon Fraser University in 1999, and a Ph.D. in Earth and Ocean Sciences from the University of Victoria in 2004. Prior to joining Concordia University in January 2007, Dr. Matthews held a post-doctoral fellowship at the University of Calgary, and worked as a post-doctoral researcher at the Carnegie Institution at Stanford. His research is aimed at better understanding the many possible interactions between human activities, natural ecosystems and future climate change, and contributing to the scientific knowledge base required to promote the development of sound national and international climate policy. Dr. Matthews has published more than 90 research papers on topics such as the climate response to cumulative carbon emissions, estimating allowable emissions for climate targets, and exploring equitable ways of sharing the global emissions quota. Dr. Matthews is a member of the College of New Scholars, Artists and Scientists of the Royal Society of Canada, serves as Concordia's scientific liaison to Future Earth, and was a contributing author to the Fourth and Fifth Assessment Reports of the Intergovernmental Panel on Climate Change.

Publications

Full publication list available at: http://www.matthewsclimatelab.org/publications.html

View Citation Metrics (Google Scholar)

2024

  • Yuh, Y. G., N’Goran, K. P., Kross, A., Heurich, M., Matthews, H. D. and Turner, S. E. Monitoring forest cover and land use change in the Congo Basin under IPCC climate change scenarios. PLOS One, in press.
  • Allen M et al. (Matthews, H. D. one of 25 co-authors). Geological Net Zero and the need for separate accounting for natural carbon sinks. Nature, in press.
  • Langer, L., Brander, M., Keles, D., Lloyd, S., Matthews, H. D. and Bjørn, A., (2024) Do voluntary renewable energy certificates lead to emission reductions? A review of studies quantifying their impact. Journal of Cleaner Production, 143791.
  • Wynes, C. S., Chow, W. T. L., David, S. J., Dickau, M., Ly, S., Maibach, E., Rogelj, J., Zickfeld, K. and Matthews, H. D. Perceptions of future climate outcomes among IPCC authors. Communications Earth and Environment, 5, 498. 
  • Garard, J. and Matthews, H. D. (2024) Digitizing Nature (Book Review), Science, 384, 39-39.
  • Nzotungicimpaye, C.-M. and Matthews, H. D. (2024) Linking cumulative carbon emissions with observable climate impacts. Environmental Research Climate, 3, 032001.
  • Moore, T. R., Chavaillaz, Y. and Matthews, H. D. (2024) Linking historical and projected trends in precipitation extremes to cumulative emissions. Atmosphere-Ocean, 62, 165-182.

2023

  • Zickfeld, K., Canadell, J. G., Fuss, S., Jackson, R. B., Jones, C. D., Lohila, A., MacIsaac, A. J., Matthews, H. D., Peters, G. P., Rogelj, J. and Zaehle, S. (2023) Net zero must consider broader climate impacts to achieve climate goals. Nature Climate Change, 13, 1298-1305.
  • Matthews, H. D. (2023) How much additional global warming should we expect from past CO2 emissions? Frontiers in Science, 1, 1327653.
  • Matthews, H. D., Zickfeld, K., Koch, A. and Luers, A. (2023) Accounting for the climate benefit of temporary carbon storage in nature. Nature Communications, 14, 5485.
  • Bjørn, A., Matthews, H. D., *Hadziosmanovic, M., Desmoitier, N. L. R., Addas, A. and Lloyd, S. M. (2023). Increased transparency is needed for corporate science-based targets to be effective. Nature Climate Change (Comment), 13, 756-759.
  • Bjørn, A., Lloyd, S., Schenker, U., Margni, M., Levasseur, A., Agez, M. and Matthews, H. D. (2023). Differentiation of greenhouse gases in corporate science-based targets improves alignment with Paris temperature goal. Environmental Research Letters. 18: 984997.
  • Yuh, Y. G., N’Goran, K. P., Beukou, G. B., Wendefeuer, J, Neba, T. F., Ndotar, A. M., Ndomba, D. M., Herbinger, I., Matthews, H. D. and Turner, S. E. (2023) Recent decline in suitable large mammal habitats within the Dzanga Sangha Protected Areas, Central African Republic. Global Ecology and Conservation, 42, e02404.
  • Turner, S. E., Fedigan, L. M., Joyce, M. M., Matthews, H. D., Moriarity, R. J., Nobuhara, H., Nobuhara, T, Stewart, B. and Shimizu, K. (2023) Mothers of disabled infants and lower ranking females had higher fecal cortisol levels in a free-ranging group of Japanese macaques (Macaca fuscata). American Journal of Primatology, 85, e23500.
  • Wynes, C. S. and Matthews, H. D. (2023) Missing density: assessing support for compact cities among Canadian municipal officials and members of the public. Climate Policy, 23, 1019-1032.
  • Yuh, Y. G., Tracz, W., Matthews, H. D. and Turner, S. E. (2023) Application of machine learning approaches for land cover monitoring in northern Cameroon. Ecological Informatics, 74: 101955. 
  • Wynes, C. S., Dickau, M., Kotcher, J., Thaker, J., Goldberg, M., Matthews, H. D. and Donner, S. (2023) Frequent pro-climate messaging does not predict pro-climate voting by United States legislators. Environmental Research Climate, 1: 025011.

2022

  • Lesk, C., Horton, R. M., Mach, K. J., Matthews, H. D., Greenford, D. H., Krekeler, R., Levesque, A., Sgouridis, S., Csala, D. (2022) Mitigation and adaptation emissions embedded in the broader climate transition. Proc. of the National Academy of Sciences, 119, e2123486119.
  • Huard, D., Fyke, J., Capellán-Pérez, I., Matthews, H. D. and Partanen, A.-I. (2022) Estimating the likelihood of GHG concentration scenarios from probabilistic Integrated Assessment Model simulations. Earth’s Future, 10, e2022EF002715.
  • Wynes C. S., Garard, J., Fajardo, P., Aoyagi, M., Burkins, M., Chaudhari, K., Forrester, T., Garschagen, M., Hudson, P., Ivanova, M., Maibach, E., Stevance, A.-S., Wood, S., Matthews, H. D. (2022) Climate action failure highlighted as leading global risk by both scientists and business leaders, Earth’s Future, 10, e2022EF002857.
  • Garard, J., Wood, S. L. R., Sabet-Kassouf, N., Ventimiglia, A., Matthews, H. D., Ubalijoro, E., Chaudhari, K., Ivanova, M., and Luers, A. L. (2022) Moderate support for the use of digital tracking to support climate-mitigation strategies. One Earth, 5, 1-12
  • Matthews, H. D. and Wynes, C. S. (2022) Current global efforts are insufficient to limit warming to 1.5°C. Science, 376, 1404-1409.
  • Bjørn, A., Lloyd, S., Brander, M. and Matthews, H. D. (2022) Renewable energy certificates allow companies to overstate their emission reductions. Nature Climate Change, 12, 508-509.
  • Bjørn, A., Lloyd, S., Brander, M. and Matthews, H. D. (2022) Renewable energy certificates threaten the integrity of corporate science-based targets. Nature Climate Change, 12, 539-546.
  • Luers, A., Yona, L., Field, C. B., Jackson, R. B., Mach, K. J., Cashmore, B., Elliott, C., Gifford, L., Honigsberg, C., Klaassen, L., Matthews, H. D., Peng, A., Stoll, C., Van Pelt, M., Virginia, R. A. and Joppa, L. (2022) Towards reliable and interoperable greenhouse gas accounting. Nature, 607, 653-656. 
  • Dickau, M., Matthews, H. D. and Tokarska, K. B. (2022) The role of remaining carbon budgets and net-zero CO2 targets in climate mitigation policy. Current Climate Change Reports, 1-13.
  • Chuard, P., Garard, J., Schulz, K., Kumarasinghe, N., Rolnick, D., and Matthews, H. D. (2022) A portrait of the different configurations between digitally-enabled innovations and climate governance. Earth System Governance, 13, 100147.
  • Hadziosmanovic, M., Lloyn, S., Bjørn, A., Paquin, R., Mengis, N. and Matthews, H. D. (2022) Using cumulative carbon budgets and corporate carbon disclosure to inform ambitious corporate emissions targets and long-term mitigation pathways. Journal of Industrial Ecology, 1-13.
  • Matthews, H. D., Zickfeld, K., Dickau, M., MacIsaac, A., Mathesius, S., Nzotungicimpaye, C.-M. and Luers, A. (2022) Temporary nature-based carbon removal can lower peak warming in a well-below 2°C scenario. Communications Earth and Environment, 3, 1-8.
  • Bjørn, A., Lloyd, S. and Matthews, H. D. (2022) Reply to Comment on ‘From the Paris Agreement to corporate climate commitments: Evaluation of seven methods for setting “science-based” emission targets’. Environmental Research Letters, 17, 038001.

2021

  • Martin, M. A. et al. (2021) Ten new insights in climate science 2021 – a horizon scan. Global Sustainability, 4, 1-20. (Matthews, H. D., co-author)
  • Jackson, R. B., Abernathy, S., Canadell, J. G., Cargnello, M., Davis, S. J., Féron, S., Fuss, S., Heyer, A. J., Hong, C., Jones, C. D., Matthews, H. D., O’Connor, F. M., Pisciotta, M., Rhoda, H. M., de Richter, R., Solomon, E. I., Wilcox, J. and Zickfeld, K. (2021) Atmospheric methane removal: a research agenda. Philosophical Transactions of the Royal Society A, 379, 20200454.
  • Reed, G., Gobby, J., Sinclair, R., Ivey, R., and Matthews, H. D. (2021) Indigenizing climate policy in Canada: a critical examination of the Pan-Canadian Framework and the ZéN RoadMap. Frontiers in Sustainable Cities, 3, 644675.
  • Bjørn, A., Lloyd, S. and Matthews, H. D. (2021) From the Paris Agreement to corporate climate commitments: Evaluation of seven methods for setting “science-based” emission targets. Environmental Research Letters, 16, 054019. 
  • Zickfeld, K., Azevedo, D., Mathesius, S., & Matthews, H. D. (2021). Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nature Climate Change. https://doi.org/10.1038/s41558-021-01061-2
  • Damon Matthews, H., Tokarska, K. B., Rogelj, J., Smith, C. J., MacDougall, A. H., Haustein, K., Mengis, N., Sippel, S., Forster, P. M., & Knutti, R. (2021). An integrated approach to quantifying uncertainties in the remaining carbon budget. Communications Earth & Environment, 2(1). https://doi.org/10.1038/s43247-020-00064-9
  • Bjorn, A., Lloyd, S., & Matthews, D. (2021). From the Paris Agreement to corporate climate commitments: evaluation of seven methods for setting “science-based” emission targets. Environmental Research Letters, 16(5). https://doi.org/10.1088/1748-9326/abe57b

2020

  • Stewart, B. M., Turner, S. E., & Matthews, H. D. (2020). Climate change impacts on potential future ranges of non-human primate species. Climatic Change, 162(4). https://doi.org/10.1007/s10584-020-02776-5
  • Mengis, N., & Matthews, H. D. (2020). Non-CO2 forcing changes will likely decrease the remaining carbon budget for 1.5 °C. Npj Climate and Atmospheric Science, 3(1). https://doi.org/10.1038/s41612-020-0123-3
  • Mengis, N., Keller, D., MacDougall, A., Eby, M., Wright, N., Meissner, K., Oschlies, A., Schmittner, A., Matthews, H. D., & Zickfeld, K. (2020). Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10). Geoscientific Model Development Discussions. https://doi.org/10.5194/gmd-2019-373
  • Mengis, N., Keller, D. P., Macdougall, A. H., Eby, M., Wright, N., Meissner, K. J., Oschlies, A., Schmittner, A., Macisaac, A. J., Damon Matthews, H., & Zickfeld, K. (2020). Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10). Geoscientific Model Development, 13(9). https://doi.org/10.5194/gmd-13-4183-2020
  • Matthews, H. D., Tokarska, K. B., Nicholls, Z. R. J., Rogelj, J., Canadell, J. G., Friedlingstein, P., Frölicher, T. L., Forster, P. M., Gillett, N. P., Ilyina, T., Jackson, R. B., Jones, C. D., Koven, C., Knutti, R., MacDougall, A. H., Meinshausen, M., Mengis, N., Séférian, R., & Zickfeld, K. (2020). Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nature Geoscience, 13(12). https://doi.org/10.1038/s41561-020-00663-3
  • Mattauch, L., Matthews, H. D., Millar, R., Rezai, A., Solomon, S., & Venmans, F. (2020). Steering the climate system: Using inertia to lower the cost of policy: Comment†. American Economic Review, 110(4). https://doi.org/10.1257/aer.20190089
  • MacDougall, A., Frölicher, T., Jones, C., Rogelj, J., Matthews, H. D., Zickfeld, K., Arora, V., Barrett, N., Brovkin, V., Burger, F., Eby, M., Eliseev, A., Hajima, T., Holden, P., Jeltsch-Thömmes, A., Koven, C., Menviel, L., Michou, M., Mokhov, I., … Ziehn, T. (2020). Is there warming in the pipeline? A multi-model analysis of the zero emission commitment from CO<sub>2</sub> Biogeosciences Discussions. https://doi.org/10.5194/bg-2019-492
  • Goodwin, P., Leduc, M., Partanen, A. I., Damon Matthews, H., & Rogers, A. (2020). A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP-LGRTC-1.0. Geoscientific Model Development, 13(11). https://doi.org/10.5194/gmd-13-5389-2020
  • Dickau, M., Matthews, D., Guertin, É., & Seto, D. (2020). Projections of declining outdoor skating availability in montreal due to global warming. In Environmental Research Communications (Vol. 2, Issue 5). https://doi.org/10.1088/2515-7620/ab8ca8

2019

  • Tokarska, K. B., Schleussner, C. F., Rogelj, J., Stolpe, M. B., Matthews, H. D., Pfleiderer, P., & Gillett, N. P. (2019). Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nature Geoscience, 12(12). https://doi.org/10.1038/s41561-019-0493-5
  • Jones, C., Frölicher, T., Koven, C., MacDougall, A., Matthews, H. D., Zickfeld, K., Rogelj, J., Tokarska, K., Gillett, N., Ilyina, T., Meinshausen, M., Mengis, N., Seferian, R., & Eby, M. (2019). The Zero Emission Commitment Model Intercomparison Project (ZECMIP) contribution to CMIP6: Quantifying committed climate changes following zero carbon emissions. Geoscientific Model Development Discussions. https://doi.org/10.5194/gmd-2019-153
  • Jones, C. D., Frölicher, T. L., Koven, C., MacDougall, A. H., Damon Matthews, H., Zickfeld, K., Rogelj, J., Tokarska, K. B., Gillett, N. P., Ilyina, T., Meinshausen, M., Mengis, N., Séférian, R., Eby, M., & Burger, F. A. (2019). The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: Quantifying committed climate changes following zero carbon emissions. Geoscientific Model Development, 12(10). https://doi.org/10.5194/gmd-12-4375-2019
  • Goodwin, P., Leduc, M., Partanen, A.-I., Matthews, H. D., & Rogers, A. (2019). A computationally efficient model for probabilistic local warming projections constrained by history matching and pattern scaling. Geoscientific Model Development Discussions. https://doi.org/10.5194/gmd-2019-264
  • Chavaillaz, Y., Roy, P., Partanen, A. I., Da Silva, L., Bresson, É., Mengis, N., Chaumont, D., & Matthews, H. D. (2019). Exposure to excessive heat and impacts on labour productivity linked to cumulative CO2 emissions. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-50047-w

​2018

  • Mengis, N., Partanen, A. I., Jalbert, J., and Matthews, H. D. (2018). 1.5° C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing. Scientific Reports, 8(1), 5831.
  • Teufel, B., Sushama, L., Huziy, O., Diro, G. T., Jeong, D. I., Winger, K. Garnaud, C., de Elia, R., Zwiers, F. W., Matthews, H. D. and Nguyen, V.-T.-V. (2018) Investigation of the mechanisms leading to the 2017 Montreal flood. Climate Dynamics, 1-14. 

  • Hienola, A., Partanen, A. I., Pietikäinen, J. P., O’Donnell, D., Korhonen, H., Matthews, H. D., and Laaksonen, A. (2018). The impact of aerosol emissions on the 1.5° C pathways. Environmental Research Letters, 13(4), 044011.
  • Partanen, A. I., Landry, J. S., and Matthews, H. D. (2018). Climate and health implications of future aerosol emission scenarios. Environmental Research Letters, 13(2), 024028.
  • Millar, R.J., Fuglestvedt, J.S., Friedlingstein, P., Rogelj, J., Grubb, M.J., Matthews, H.D., Skeie, R.B., Forster, P.M., Frame, D.J. and Allen, M.R. (2018). Reply to ‘Interpretations of the Paris climate target’. Nature Geoscience, 11, 222.
  • Matthews, H. D., Zickfeld, K., Knutti, R., and Allen, M. R. (2018). Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets. Environmental Research Letters, 13(1), 010201.

2017

  • Millar, R. J., Fuglestvedt, J. S., Grubb, M., Rogelj, J., Skeie, R. B., Friedlingstein, P., Forster, P. M., Frame, D., Matthews, H. D. and Allen, M. R. (2017) Emissions budgets and pathways consistent with limiting warming to 1.5 °C. Nature Geoscience, 10, 741-747.
  • Haustein, K., Allen, M. R., Forster, P. M., Otto, F. E. L., Mitchell, D. M., Matthews, H. D. and Frame, D. A (2017) A real-time Global Warming Index. Scientific Reports, 7(1), 15417.
  • Partanen, A.-I., Leduc, M. and Matthews, H. D. (2017) Seasonal climate change patterns due to cumulative CO2 emissions. Environmental Research Letters, 12(7), 075002.
  • Brault, M.-O., Matthews, H. D. and Mysak, L. A. (2017) The importance of terrestrial weathering changes in multi-millennial recovery of the global carbon cycle: a two-dimensional perspective. Earth System Dynamics, 8(2), 455-475. 
  • Matthews, H. D., Landry, J.-S., Partanen, A.-I., Allen, M., Eby, M., Forster, P., Friedlingstein, P. and Zickfeld, K. (2017) Estimating carbon budgets for ambitious mitigation targets. Current Climate Change Reports, 3(1), 69-77. 
  • Landry, J.-S., Partanen, A.-I. and Matthews, H. D. (2017) Carbon cycle and climate effects of forcing from fire-emitted aerosols. Environmental Research Letters, 12(2), 025002.
  • Brault M.-O., Mysak L. A. and Matthews H. D. (2017) Carbon cycle implications of terrestrial weathering changes since the last glacial maximum. FACETS, 2, 267-285.
  • Landry, J.-S. and Matthews, H. D. (2017) The global pyrogenic carbon cycle and its impact on the level of atmospheric CO2 over past and future centuries. Global Change Biology, 23(8), 3205-3218.

2016

  • Landry, J.-S., Parrott, L., Price, D. T., Ramankutty, N. and Matthews, H. D. (2016) Modelling long-term impacts of mountain pine beetle outbreaks on merchantable biomass, ecosystem carbon, albedo, and radiative forcing. Biogeosciences, 13, 5277-5295. 
  • Partanen, A.-I., Keller, D. P., Korhonen, H. and Matthews, H. D. (2016) Impacts of sea spray geoengineering on marine biogeochemistry. Geophysical Research Letters, 43, 10.1002/2016GL070111. 
  • Leduc, M., Matthews, H. D. and De Elia, R. (2016) Regional estimates of the Transient Climate Response to cumulative CO2 Emissions. Nature Climate Change, 6, 474-478. 
  • Zickfeld, K., MacDougall, A. H. and Matthews, H. D. (2016) On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environmental Research Letters, 055006. 
  • Graham, T. L., Matthews, H. D. and Turner, S. E. (2016) Evaluating climatic changes in regions of non-human primate habitat. International Journal of Primatology, 37, 158–174. 
  • Landry, J.-S. and Matthews, H. D. (2016) Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses. Biogeosciences, 13, 2137–2149. 
  • Landry, J.-S., Price, D. T., Ramankutty, N., Parrott L. and Matthews, H. D. (2016) Implementation of a Marauding Insect Module (MIM, version 1.0) into the Integrated BIosphere Simulator (IBIS, version 2.6 b4) dynamic vegetation-land surface model. Geoscientific Model Development, 9, 1243–1261. 
  • Simmons, C. and Matthews, H. D. (2016) Assessing the implications of human land-use change for the Transient Climate Response to cumulative carbon Emissions. Environmental Research Letters, 11, 035001. 
  • Simmons, C. T., Matthews, H. D. and Mysak, L. A. (2016) Deglacial climate, carbon cycle and ocean chemistry changes in response to a terrestrial carbon release. Climate Dynamics, 46, 1287–1299. 
  • Matthews, H. D. (2016) Quantifying historical carbon and climate debts. Nature Climate Change, 6, 60–64. 
  • Matthews, H. D. and Lamontagne, C. Global Climate Models. In: The International Encyclopedia of Geography: People, the Earth, Environment, and Technology, ISBN: 9781118786352.
  • ​Stoett, P. and Matthews, H. D. (2016) Paris, Marrakech and you: the battle against climate change. Montreal Gazette, November 6, 2016. 
  • Matthews, H. D. (2016) Montreal emissions targets for 1.5◦C and 2◦C global warming. Office de Consultations Public de Montreal, submitted to the public consultation on emissions targets, February 2016. 

2015

2014

2013


2012

2011

2010

2009

2008

  • Matthews, H. D. and Caldeira, K. (2008) Stabilizing climate requires near-zero emissions. Geophysical Research Letters, L04705. 
  • Plattner, G.-K., et al. (2008) Long-term climate commitments projected with climate-carbon cycle models. Journal of Climate, 21, 2721–2751. (Matthews, H. D., co-author) 
  • Schmittner, A., Oschlies, A., Matthews, H. D. and Galbraith, E. D. (2008) Future changes in climate, ocean circulation, ecosystems and biogeochemical cycling simulated for a business-as-usual CO2 scenario until year 4000 AD. Global Biogeochemical Cycles, GB1013. 
  • Turner, S. E., Fedigan, L. M., Nobuhara, H., Nobuhara, T., Matthews, H. D. and Nakamichi, M. (2008) Monkeys with disabilities: Prevalence and severity of congenital limb malformations in Macaca fuscata on Awaji Island. Primates, 49, 223–226. 

2007

  • Matthews, H. D. and Caldeira, K. (2007) Transient climate-carbon simulations of planetary geoengineering. Proceedings of the National Academy of Sciences, U.S.A., 104, 9949-9954. 
  • Matthews, H. D. and Keith, D. W. (2007) Carbon-cycle feedbacks increase the likelihood of a warmer future. Geophysical Research Letters, 34, L09702. 
  • Matthews, H. D., Eby, M., Ewen, T., Friedlingstein, P. and Hawkins, B. (2007) What determines the magnitude of carbon cycle-climate feedbacks? Global Biogeochemical Cycles, 21, GB2012.
  • Matthews, H. D. (2007) Effect of CO2 fertilization uncertainty on future climate change in a coupled climate-carbon model. Global Change Biology, 13, 1068-1078.
  • Meehl, G. A., Stocker, T. F. et al. (2007) Chapter 10: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis, Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K. (Matthews, H. D., contributing author)

2006

  • Matthews, H. D. (2006) Emissions targets for CO2 stabilization as modified by carbon cycle feedbacks. Tel lus B Special Issue, 58B, 591-602. 
  • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V, Doney, S., Eby, M., Fung, I., Govindasamy, B., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Thompson, S., Weaver, A. J., Yoshikawa, C., and Zeng, N. (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353.
  • Brovkin, V., Claussen, M., Driesschaert, E., Fichefet, T., Kicklighter, D., Loutre, M.-F., Matthews, H. D., Ramankutty, N., Schaeffer, M. and Sokolov, A. (2006) Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity. Climate Dynamics, 26, 587–600.
  • Matthews, D. (2006) The water cycle freshens up. Nature, 439, 793-794. 

2005

  • Matthews, H. D. (2005) Decrease of emissions required to stabilize atmospheric CO2 due to positive carbon cycle-climate feedbacks. Geophysical Research Letters, 32, L21707. 
  • Matthews, H. D., Eby, M., Weaver, A. J. and Hawkins, B. J. (2005) Primary productivity control of simulated carbon cycle-climate feedbacks. Geophysical Research Letters, 32, L14708. 
  • Matthews, H. D., Weaver, A. J. and Meissner, K. J. (2005) Terrestrial carbon cycle dynamics under recent and future climate change. Journal of Climate, 18, 1609-1628.

2004

  • Matthews, H. D., Weaver, A. J., Meissner, K. J., Gillett, N. P. and Eby, M. (2004) Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dynamics, 22, 461-479. 

2003

  • Meissner, K. J., Weaver, A. J., Matthews, H. D. and Cox, P. M. (2003) The role of land-surface dynamics in glacial inception: A study with the UVic Earth System Climate Model. Climate Dynamics, 21, 515-537.
  • Matthews, H. D., Weaver, A. J., Meissner, K. J. and Eby, M. (2003) Radiative forcing of climate by historical land cover change. Geophysical Research Letters, 30, 1055.

2001

  • Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M. (2001) The UVic Earth System Climate Model: Model description, climatology and application to past, present and future climates. Atmosphere-Ocean, 39, 361-428.

Donny Seto (CSIM Lab Manager, and DACCS Research Associate)  
My research focuses on analyzing the carbon footprint of cities, sustainable urban development, and impact assessments, with an emphasis on GIS-based analyses of climate change and mitigation pathways. I aim to develop strategies that promote urban sustainability and resilience in the face of climate challenges. At Data Analytics for Canadian Climate Services (DACCS), I coordinate with university researchers to identify their data needs, facilitating access to climate data and tools that support informed decision-making on climate adaptation and mitigation.

Camilo Alejo Monroy (Post Doc)
I am a Postdoctoral fellow interested in the interplay of land tenure, financial incentives, and local values to achieve climate and biodiversity outcomes from a geospatial perspective. Currently, I coordinate the NSERC Alliance project “Equitable Futures for Nature-based Solutions” at Sustainability in the Digital Age and Future Earth Canada Hub. This project, led by Prof. Damon Matthews, is twofold: we aim to (1) understand Canada’s landscape of Nature-based Solutions, and (2) leverage Machine Learning tools to monitor current and prioritize future conservation and restoration actions. Our research aims to catalyze science-based decision-making to align climate and biodiversity targets from an equitable perspective.

Rebecca Evans (Post Doc)
I am a Mitacs Elevate Postdoctoral Fellow at Concordia University in Montreal, QC. I got her Master's degree in Earth Sciences at the University of Oxford in 2016, then in 2022 graduated from my PhD in Meteorology and Physical Oceanography at the University of Miami's Rosenstiel School of Marine, Atmospheric, and Earth Sciences. Currently, my research focuses on agriculture as a nature-based solution to climate change. This research involves simulations of carbon sequestration into agricultural soil at plausible rates, performed using the University of Victoria Earth System Climate Model. The goal is to study the climate benefits of nature-based carbon removal and how they depend on the existing state of the climate system. 

Etienne Guertin (Ph.D Student)
My interest is in improving the understanding of the interrelationship between wildfires and climate change at a global scale. With the University of Victoria Earth System Climate Model (UVic ESCM), I modelled wildfires in the different climate and vegetation regions. My greatest interest is on knowing whether or not global fire regime will change in the next hundreds of years due to climate change and if that in return will affect climate.  I hope my research will increase the scientific understanding of the mechanisms that lead to wildfires and help policy makers and forest managers adapt in advance to the changing global fire regime. ​

Mitchell Dickau (Ph.D Student)
My research focuses on using the UVic-ESCM and CMIP6 climate models to investigate temperature overshoot, particularly the irreversibility of climate outcomes after surpassing and subsequently returning to a temperature target through negative emissions. I have also published work on topics including remaining carbon budgets, the impact of climate change on outdoor ice skating in Canada, the effectiveness of nature-based solutions, climate messaging by U.S. politicians, and a survey of IPCC contributors. I am also affiliated with the Canadian Centre for Climate Services in ECCC as a student researcher working on climate adaptation and fire weather.

Olivier Chalifour (Ph.D. Student)
Driven by curiosity, I seeks to push the boundaries of science through his research on artificial intelligence, wildfires, and Earth system climate models. Building on the expertise gained during his Masters in Atmospheric Physics, where I worked with high-resolution models, my PhD research continues to deepen and expand his understanding of model mechanics. My current project focuses on assessing the effectiveness of nature-based solutions (NBS) and their vulnerability to changing wildfire regimes under future climate scenarios. Using the University of Victoria Earth System Climate Model (UVic ESCM), I aims to improve the representation of wildfires by incorporating artificial intelligence to enhance physics-based processes in the model. 

Miles Barette Duckworth (M.Sc. Student)
​My research investigates the potential for carbon sequestration through chemical weathering of gravel on gravel roads. With our changing climate, negative emissions strategies need to be explored, as reduction in atmospheric carbon dioxide
levels is necessary to avoid the major impacts of climate change. As gravel roads represent an unintentional form of enhanced weathering, my research seeks to investigate whether gravel roads contribute meaningfully to the reduction of atmospheric carbon dioxide levels over short timescales. My other areas of interest are; food politics, freshwater fish biology, river geomorphology, and web-based programming. For more about me, please visit my linkedin profile.

Meagan Oxley​  (M.Sc. Student)
I am exploring the language used in fossil fuel lobbying efforts and their impact on climate actions and policy. As a Climate change researcher and activist with a focus on policy, just energy transition, decarbonized electrification, international law, and human rights, I am always looking to expand my funding opportunities for my Master's research into this area of inquiry. 

Anthony Garoufalis-Auger  (M.Sc. Student)
​I am exploring climate mitigation potential of dietary shifts in Canada. My work has focused on undeserved areas of climate policy, identifying and thinking up solutions, and organizing people and organizations into advocacy coalitions. I have strong analytical and research abilities, leadership qualities, interpersonal skills, and useful natural reflex to be highly critical of everything.

CSIM Alumni and graduates
  • Xiaoxiao Sun (Master Student): Potential uses of digital technologies for sustainability through the Coalition for Digital Environmental Sustainability (CODES)
  • Yisa Ginath (Post Doc) Forest cover and land use change in the Congo Basin under socioeconomic impacts and climate change scenarios.
  • Daniel Horen Greenford (Ph.D. Student)  Policy solutions to facilitate emissions reductions necessary to avert dangerous climate change.
  • Travis Moore (Ph.D. Student)  Quantification of observed and estimated future trends of extreme precipitation, and other weather extremes, as a function of cumulative carbon emissions.
  • ​Maida Hadziosmanovic (Ph.D Student) Corporate responsibility for climate change.
  • Anders Bjørn(Post Doc) Analysis of companies setting  science-based ​ emission reduction targets informed by the temperature goal of the Paris Agreement
  • Claude-Michel Nzotungicimpaye (Post Doc) (1) the quantitative relationship between cumulative CO2 emissions and global temperature commonly known as transient climate response to cumulative emissions (TCRE), and (2) regional estimates of the TCRE.
  • Seth Wynes (Post Doc) ​ Politics of climate change mitigation and reducing the climate impact of air travel
  • Jen Gobby (Post Doc) ​Documenting and leveraging the learnings of land defenders and environmental justice activists for movements and communities for transformative change in social, economic and political systems
  • Nadine Mengis (Post-Doctoral Researcher): Calculating carbon budgets for ambitious climate mitigation targets and quantifying the uncertainty arising from model parameters
  • Yann Chavaillaz (Post-Doctoral Researcher):  Risk of abrupt climate changes resulting from cumulative emissions and their effect on the intensity, the duration and the frequency of extreme events
  • Antti-Ilari Partanen (Post-Doctoral Researcher): Aerosols emissions as pollutant and as factor in climate forcing; the impact of GHG type on the relationship between cumulative carbon emissions and climate change; estimating carbon budgets for ambitious climate targets
  • Jean-Sébastien Landry (Post-Doctoral Researcher): Modelling fire and other disturbances in the climate system
  • Martin Leduc (Post-Doctoral Researcher): Regional estimates of the transient climate response to cumulative CO2 emissions
  • Christopher Simmons (Post Doctoral Researcher & Ph.D.): Carbon cycle dynamics since the last glacial maximum
  • Marc-Olivier Brault (Ph.D.): Modelling the effect of continental weathering on ocean carbon cycling over the last glacial cycle
  • Samantha Mailhot (M.Sc. Student). Ecological economics and environmental psychology in public opinion and value placed on economic growth against environment. 
  • Alex MacIsaac (M.Sc.): Quantify the contribution to warming from non-carbon dioxide emission rates using simplifed metrics
  • Tanya Graham (M.Sc.): GIS analysis to assess the impact of CO2 emissions and the resulting climate changes across terrestrial mammal habitat ranges
  • Trevor Smith (M.Sc.): Climate change impacts on wine growing in Quebec 
  • Loukia Papadopoulos (M.Sc.): Criteria for successful implementation of Nationally Appropriate Mitigation Actions
  • Daniel Horen Greenford (M.Sc.): Equitable allocation of emissions embodied in international trade
  • Sophie Gauvreau (M.Sc. Student).  Phenology changes due to climate warming, with a focus on the timing of spring pollination in Silver Maple.
  • Cassandra Lamontagne (M.Sc.): Local observations of environmental change and climate change impacts in Gitga'at First Nation
  • Travis Moore (M.Sc.): Extreme weather events due to global mean temperature increases
  • Marc-Olivier Brault (M.Sc.): Effect of Pleistocene megafauna on early Holocene climate
  • Nikolay Damyanov (M.Sc.):  Effect of winter warming on outdoor skating in Canada
  • Andrew Pinsonneault (M.Sc.) Effect of ocean acidification on the marine carbonate cycle
  • Karen Paquin (M.Sc): Potential for carbon sequestration in boreal forest woodlots
  • Andrew Ross (M.Sc.): Probabilistic assessment of the rate of future climate change
  • Alex Matveev (M.Sc.): Evaluating the land use change carbon flux and its impact on climate
  • Mitchell Dickau (Honours): Impacts of climate changes on outdoor skating conditions in Montreal
  • Brogan Stewart (Honours): Potential loss of primate habitat on a global-scale from future climate change
  • Samantha Mailhot (Honours): Climate clock as a tool for effective climate science communication
  • Tanya Graham (Honours): Impact of climate change on primate populations
  • Trevor Smith (Honours): Metrics for comparing the climate effect of different greenhouse gases
  • Serge Keverian (Honours): Regional attribution of carbon emissions and climate change
  • Kelly Nugent (Honours): Drivers of North American continental runoff and implications for ocean circulation
  • Andrew Pinsonneault (Honours): Climate model reliability in simulating enhanced forest productivity resulting from CO2 fertilization
  • Andrew Ross (Honours): Impact of geoengineering on the rate of climate warming.
Current Opportunities

I am looking for graduate students interested in learning about global warming and climate modelling, and exploring the role of greenhouse gas cycles in the context of recent and future climate change. Potential students should have good quantitative skills, and some knowledge of computer programming would be an asset. Possible research projects include:

  • Estimating the climate response to cumulative greenhouse gas emissions 
  • Predicting allowable emissions for global climate change policy targets 
  • Projecting future changes in the availability of outdoor skating
  • Assessing national contributions to and responsibility for global warming
  • Modelling the influence of past and future land-use change on climate 
  • Modelling the atmospheric sinks for methane and nitrous oxide 
 

 

Back to top

© Concordia University