Skip to main content

Bianucci Research Group

Our research is mostly based on optical microresonators, microscopic structures that can maintain light confined within them. We interrogate them using optical fibers (that have been tapered to a diameter comparable to the wavelength of near-infrared light) and free-space lasers.

Some of the projects we are interested in are

  • Studying the optical properties of nanomaterials,
  • Designing and implementing micro-and nanophotonics devices,
  • Topological photonics,
  • Using microresonators for sensing and
  • Microresonators and quantum optics.

Principal investigator

Pablo Bianucci, Ph.D.

Email: pablo.bianucci@concordia.ca

Current members

Alexis Hotte-Kilburn

M.Sc. student
Topological photonic crystal ring resonators

Email: a_hottek@live.concordia.ca

Kaleb Mathieu

M.Sc. student

Mathieu Couillard

M.Sc. student
Development and characterization of packaged optical microresonators

Email: mathieu.couillard@mail.concordia.ca

Samar Deep

M.Sc. student
Physics and applications of SNAP resonators

Seyed Mohammed Mirjalili

Ph.D. student
(co-supervised with Dr. Zahangir Kabir, Electrical and Computer Engineering, Concordia University)

Sulman Zia

M.Sc. student

Undergraduate alumni

  • Kevin Sohn, B.Sc., Fabrication of torsion surface nanoscale axial photonics microresonators (Volunteer)
  • George Williams, B.Sc., Photonic bilayer graphene (SCOL 490)
  • Lee Salo, B.Sc., Optical fibre guide for connecting to on-chip grating couplers (PHYS 497)
  • Mihail Yanakiev, B.Sc., Numerically finding the Zak phase of a dimierized waveguide (Physics USRA)
  • Mihail Yanakiev, B.Sc., Topological analysis of the dimerized photonic chain (PHYS 496)
  • Samar Deep, B.Sc., Optical nerve-agent sensor (RA)
  • Joshua Lilliman, B.Sc., Topological confinement in a nanobeam microcavity (Volunteer)
  • Erin Stigall, B.Sc., Topological confinement in a nanobeam microcavity (Volunteer)
  • Jay Pimprikar, B.Sc., A review of topological photonics (SCOL 290)
  • Nicolas Boladian, B.Sc., Fabrication of an optical fiber inspection microscope (PHYS 497)
  • Matias Rittatore, B.Sc., Interfacing a computer with a nanopositioning stage (PHYS 497)
  • Jeffrey Morais, B.Sc., Topological confinement in a nanobeam microcavity (Volunteer)
  • Amalia Sanabria López-Silvero, B.Sc., Analysis of resonant modes on fibers with varying dielectric profiles (Physics USRA)
  • Arvind Gupta, B.Sc.
  • Matias Rittatore, B.Sc.
  • Alexandra Trempe, B.Sc.
  • Nathan Yee, B.Sc., Growth of ZnO nanowires (SCOL 290)
  • Dhan Cardinal, B.Sc., Resonant modes of periodic structures
  • Costa Papadatos, B.Sc., Fabrication of tapered optical fibers
Optical table

ST-UT2 optical table with active vibration damping

Fiber Taper set up

Fully computer controlled

Optical Device Characterization

Tektronix MDO 4034-3 oscilloscope
Photonetics Tunics-Plus tunable from 1430-1640nm

Micro Photoluminescence

Low temperature capability
369nm continuous wave laser
50cm triple grating Czerny-Turner spectrograph with a EMCCD imaging camera

Chemical hood vent
  • DLP 3D Printer
  • Thermolyne 1300 Furnace
  • Clad alignment fusion splicer
  • Elga Purelab Flex water purifier
  1. Khattak, H. K., Bianucci, P. & Slepkov, A. D. Linking plasma formation in grapes to microwave resonances of aqueous dimers. Proc Natl Acad Sci USA 116, 4000–4005 (2019). doi:10.1073/pnas.1818350116
  2. McGarvey-Lechable, K. & Bianucci, P. Bloch-Floquet waves in optical ring resonators. Phys. Rev. B 97, 214204 (2018). doi:10.1103/PhysRevB.97.214204
  3. Hassanpour, A., Shen, S. & Bianucci, P. Sodium-doped oriented zinc oxide nanorod arrays: insights into their aqueous growth design, crystal structure, and optical properties. MRC 8, 570–576 (2018). doi:10.1557/mrc.2018.45
  4. Hamidfar, T. et al. Localization of light in an optical microcapillary induced by a droplet. Optica 5, 382 (2018). doi:10.1364/OPTICA.5.000382
  5. Safdari, M. J., Mirjalili, S. M., Bianucci, P. & Zhang, X. Multi-objective optimization framework for designing photonic crystal sensors. Appl. Opt. 57, 1950 (2018). doi:10.1364/AO.57.001950
  6. Hassanpour, A., Guo, P., Shen, S. & Bianucci, P. The effect of cation doping on the morphology, optical and structural properties of highly oriented wurtzite ZnO-nanorod arrays grown by a hydrothermal method. Nanotechnology 28, 435707 (2017). doi:10.1088/1361-6528/aa849d
  7. Hamidfar, T., Dmitriev, A., Magdan, B., Bianucci, P. & Sumetsky, M. Surface nanoscale axial photonics at a capillary fiber. Opt. Lett. 42, 3060 (2017). doi:10.1364/OL.42.003060
  8. Hassanpour, A., Bogdan, N., Capobianco, J. A. & Bianucci, P. Hydrothermal selective growth of low aspect ratio isolated ZnO nanorods. Materials & Design 119, 464–469 (2017). doi:10.1016/j.matdes.2017.01.089
  9. Ghali, H., Bianucci, P. & Peter, Y.-A. Wavelength shift in a whispering gallery microdisk due to bacterial sensing: A theoretical approach. Sensing and Bio-Sensing Research 13, 9–16 (2017). doi:10.1016/j.sbsr.2017.01.004
  10. McGarvey-Lechable, K. et al. Slow light in mass-produced, dispersion-engineered photonic crystal ring resonators. Opt. Express 25, 3916 (2017). doi:10.1364/OE.25.003916
  11. Bianucci, P. Optical Microbottle Resonators for Sensing. Sensors 16, 1841 (2016). doi:10.3390/s16111841
  12. Ghali, H., Chibli, H., Nadeau, J., Bianucci, P. & Peter, Y.-A. Real-Time Detection of Staphylococcus Aureus Using Whispering Gallery Mode Optical Microdisks. Biosensors 6, 20 (2016). doi:10.3390/bios6020020
  13. McGarvey-Lechable, K. & Bianucci, P. Maximizing slow-light enhancement in one-dimensional photonic crystal ring resonators. Opt. Express 22, 26032 (2014). doi:10.1364/OE.22.026032
  14. Dastjerdi, M. H. T. et al. Optically pumped rolled-up InAs/InGaAsP quantum dash lasers at room temperature. Semicond. Sci. Technol. 28, 094007 (2013). doi:10.1088/0268-1242/28/9/094007
  15. Tian, Z., Bianucci, P. & Plant, D. V. Fiber Ring Laser Using Optical Fiber Microdisk as Reflection Mirror. IEEE Photon. Technol. Lett. 24, 1396–1398 (2012). doi:10.1109/LPT.2012.2204244
  16. Bianucci, P., Mukherjee, S., Dastjerdi, M. H. T., Poole, P. J. & Mi, Z. Self-organized InAs/InGaAsP quantum dot tube lasers. Appl. Phys. Lett. 101, 031104 (2012). doi:10.1063/1.4737425
  17. Tian, Z. et al. Dynamical thermal effects in InGaAsP microtubes at telecom wavelengths. Opt. Lett. 37, 2712 (2012). doi:10.1364/OL.37.002712
  18. Mi, Z. & Bianucci, P. When self-organized In(Ga)As/GaAs quantum dot heterostructures roll up: Emerging devices and applications. Current Opinion in Solid State and Materials Science 16, 52–58 (2012). doi:10.1016/j.cossms.2011.09.001
  19. Tian, Z. et al. Selective polarization mode excitation in InGaAs/GaAs microtubes. Opt. Lett. 36, 3506 (2011). doi:10.1364/OL.36.003506
  20. Tian, Z. et al. Single rolled-up InGaAs/GaAs quantum dot microtubes integrated with silicon-on-insulator waveguides. Opt. Express 19, 12164 (2011). doi:10.1364/OE.19.012164
Back to top

© Concordia University