Skip to main content
Headshot image

Damon Matthews, PhD

  • Professor, Geography, Planning and Environment

Contact information

Biography

Damon Matthews is a Professor in the Department of Geography, Planning and Environment at Concordia University. Damon holds a PhD in climate science from the University of Victoria, and is a member of the College of New Scholars, Artists and Scientists of the Royal Society of Canada. He has published more than 130 research papers on topics ranging from quantifying the remaining carbon budget to assessing equitable approaches to allocate emission allowances to individual countries. He is internationally recognized for his work in policy-relevant climate science, as well as for initiatives such as the Climate Clock that use digital visualization and web-based technologies to motivate and accelerate climate action. Damon is the Scientific co-Director of Sustainability in the Digital Age, and directs the NSERC CREATE in Leadership in Environmental and Digital Innovation for Sustainability (LEADS) program, which aims to train graduate student researchers at the intersection of sustainability science and digital innovation.

Professional affiliations

Royal Society of Canada
Canadian Meteorological and Oceanography Society
American Geophysical Union

Attention Media: Will speak on climate change related issues
View Damon Matthews's CV

NSERC CREATE: Leadership in Environmental and Digital Innovation for Sustainability (LEADS)

The LEADS (Leadership in Environmental and Digital Innovation for Sustainability) program is a new NSERC-CREATE funded graduate training program that seeks to train graduate students at the interface of the fields of sustainability science and digital technologies. Our goal is to provide students with the skills, knowledge and experience needed to mobilize the transformative power of digital innovation towards the challenge of meeting the world’s climate and other sustainability goals.

Student Opportunities

Information about openings for graduate students can be found on the LEADS program website.

Climate Scenarios, Impacts and Modelling (CSIM) Lab

Visit the CSIM lab website

Graduate student opportunities

I am looking for graduate students interested in learning about global warming and climate modelling, and exploring the role of greenhouse gas cycles in the context of recent and future climate change. Potential students should have good quantitative skills, and some knowledge of computer programming would be an asset. Possible research projects include:

  • Modelling the climate effect of nature-based climate solutions
  • Estimating the climate response to cumulative greenhouse gas emissions
  • Predicting allowable emissions for global climate change policy targets
  • Assessing climate impacts as a function of global mean temperature change
  • Assessing national contributions to and responsibility for global warming

Current Climate Lab student projects

  • Camilo Alejo Monroy (Postdoc): Prioritizing conservation and restoration actions in Canada
  • Rebecca Evans (Postdoc): Modelling agriculture as a nature-based climate solution
  • Étienne Guertin (PhD student): Modelling coupled climate-economic systems
  • Mitchell Dickau (PhD student): Effect of non-CO2 emissions on the remaining carbon budget
  • Olivier Chalifour: Modelling wildfire and its influence on nature-based carbon storage
  • Faye Sun (MSc student): Using large language models to improve climate science education
  • Alana-Dawn Phillips (MSc student): Indigenous perspectives on nature-based solutions
  • Meagan Oxley (MSc student): Exploring the language used in fossil fuel lobbying efforts
  • Anthony Garafoulis-Auger (MSc student): Climate mitigation potential of dietary shifts in Canada
  • Alexandria Schmitz (MSc student): Microtree nurseries as a model for socially engaged carbon credits
  • Miles Barette Duckworth (MSc student): Effect of gravel road weathering on carbon sequestration
  • Donny Seto (RA and Lab Manager): Cities, fossil fuel reserves and climate change

Teaching activities

Current Teaching

HENV 665 - Sustainability in the Digital Age

Past Courses Taught

HENV 660 - Climate Change and Sustainability
GEOG 478 - Climate Change Science, Impacts and Policy
GEOG 378 - The Climate System
GEOL 440 - Seminar in Environmental Earth Sciences
HENV 655 - Environmental Modeling
HENV 610 - Quantitative Research Methods

Publications

Full publication list available here:

Google Scholar profile

Selected Publications

  • Yuh, Y. G., N’Goran, K. P., Kross, A., Heurich, M., Matthews, H. D. and Turner, S. E. Monitoring forest cover and land use change in the Congo Basin under IPCC climate change scenarios. PLOS One, in press.
  • Allen M et al. (Matthews, H. D. one of 25 co-authors). Geological Net Zero and the need for separate accounting for natural carbon sinks. Nature, in press.
  • Langer, L., Brander, M., Keles, D., Lloyd, S., Matthews, H. D. and Bjørn, A., (2024) Do voluntary renewable energy certificates lead to emission reductions? A review of studies quantifying their impact. Journal of Cleaner Production, 143791.
  • Wynes, C. S., Chow, W. T. L., David, S. J., Dickau, M., Ly, S., Maibach, E., Rogelj, J., Zickfeld, K. and Matthews, H. D. Perceptions of future climate outcomes among IPCC authors. Communications Earth and Environment, 5, 498. 
  • Garard, J. and Matthews, H. D. (2024) Digitizing Nature (Book Review), Science, 384, 39-39.
  • Nzotungicimpaye, C.-M. and Matthews, H. D. (2024) Linking cumulative carbon emissions with observable climate impacts. Environmental Research Climate, 3, 032001.
  • Moore, T. R., Chavaillaz, Y. and Matthews, H. D. (2024) Linking historical and projected trends in precipitation extremes to cumulative emissions. Atmosphere-Ocean, 62, 165-182.
  • Zickfeld, K., Canadell, J. G., Fuss, S., Jackson, R. B., Jones, C. D., Lohila, A., MacIsaac, A. J., Matthews, H. D., Peters, G. P., Rogelj, J. and Zaehle, S. (2023) Net zero must consider broader climate impacts to achieve climate goals. Nature Climate Change, 13, 1298-1305.
  • Matthews, H. D. (2023) How much additional global warming should we expect from past CO2 emissions? Frontiers in Science, 1, 1327653.
  • Matthews, H. D., Zickfeld, K., Koch, A. and Luers, A. (2023) Accounting for the climate benefit of temporary carbon storage in nature. Nature Communications, 14, 5485.
  • Bjørn, A., Matthews, H. D., *Hadziosmanovic, M., Desmoitier, N. L. R., Addas, A. and Lloyd, S. M. (2023). Increased transparency is needed for corporate science-based targets to be effective. Nature Climate Change (Comment), 13, 756-759.
  • Bjørn, A., Lloyd, S., Schenker, U., Margni, M., Levasseur, A., Agez, M. and Matthews, H. D. (2023). Differentiation of greenhouse gases in corporate science-based targets improves alignment with Paris temperature goal. Environmental Research Letters. 18: 984997.
  • Yuh, Y. G., N’Goran, K. P., Beukou, G. B., Wendefeuer, J, Neba, T. F., Ndotar, A. M., Ndomba, D. M., Herbinger, I., Matthews, H. D. and Turner, S. E. (2023) Recent decline in suitable large mammal habitats within the Dzanga Sangha Protected Areas, Central African Republic. Global Ecology and Conservation, 42, e02404.
  • Turner, S. E., Fedigan, L. M., Joyce, M. M., Matthews, H. D., Moriarity, R. J., Nobuhara, H., Nobuhara, T, Stewart, B. and Shimizu, K. (2023) Mothers of disabled infants and lower ranking females had higher fecal cortisol levels in a free-ranging group of Japanese macaques (Macaca fuscata). American Journal of Primatology, 85, e23500.
  • Wynes, C. S. and Matthews, H. D. (2023) Missing density: assessing support for compact cities among Canadian municipal officials and members of the public. Climate Policy, 23, 1019-1032.
  • Yuh, Y. G., Tracz, W., Matthews, H. D. and Turner, S. E. (2023) Application of machine learning approaches for land cover monitoring in northern Cameroon. Ecological Informatics, 74: 101955. 
  • Wynes, C. S., Dickau, M., Kotcher, J., Thaker, J., Goldberg, M., Matthews, H. D. and Donner, S. (2023) Frequent pro-climate messaging does not predict pro-climate voting by United States legislators. Environmental Research Climate, 1: 025011.
  • Lesk, C., Horton, R. M., Mach, K. J., Matthews, H. D., Greenford, D. H., Krekeler, R., Levesque, A., Sgouridis, S., Csala, D. (2022) Mitigation and adaptation emissions embedded in the broader climate transition. Proc. of the National Academy of Sciences, 119, e2123486119.
  • Huard, D., Fyke, J., Capellán-Pérez, I., Matthews, H. D. and Partanen, A.-I. (2022) Estimating the likelihood of GHG concentration scenarios from probabilistic Integrated Assessment Model simulations. Earth’s Future, 10, e2022EF002715.
  • Wynes C. S., Garard, J., Fajardo, P., Aoyagi, M., Burkins, M., Chaudhari, K., Forrester, T., Garschagen, M., Hudson, P., Ivanova, M., Maibach, E., Stevance, A.-S., Wood, S., Matthews, H. D. (2022) Climate action failure highlighted as leading global risk by both scientists and business leaders, Earth’s Future, 10, e2022EF002857.
  • Garard, J., Wood, S. L. R., Sabet-Kassouf, N., Ventimiglia, A., Matthews, H. D., Ubalijoro, E., Chaudhari, K., Ivanova, M., and Luers, A. L. (2022) Moderate support for the use of digital tracking to support climate-mitigation strategies. One Earth, 5, 1-12
  • Matthews, H. D. and Wynes, C. S. (2022) Current global efforts are insufficient to limit warming to 1.5°C. Science, 376, 1404-1409.
  • Bjørn, A., Lloyd, S., Brander, M. and Matthews, H. D. (2022) Renewable energy certificates allow companies to overstate their emission reductions. Nature Climate Change, 12, 508-509.
  • Bjørn, A., Lloyd, S., Brander, M. and Matthews, H. D. (2022) Renewable energy certificates threaten the integrity of corporate science-based targets. Nature Climate Change, 12, 539-546.
  • Luers, A., Yona, L., Field, C. B., Jackson, R. B., Mach, K. J., Cashmore, B., Elliott, C., Gifford, L., Honigsberg, C., Klaassen, L., Matthews, H. D., Peng, A., Stoll, C., Van Pelt, M., Virginia, R. A. and Joppa, L. (2022) Towards reliable and interoperable greenhouse gas accounting. Nature, 607, 653-656. 
  • Dickau, M., Matthews, H. D. and Tokarska, K. B. (2022) The role of remaining carbon budgets and net-zero CO2 targets in climate mitigation policy. Current Climate Change Reports, 1-13.
  • Chuard, P., Garard, J., Schulz, K., Kumarasinghe, N., Rolnick, D., and Matthews, H. D. (2022) A portrait of the different configurations between digitally-enabled innovations and climate governance. Earth System Governance, 13, 100147.
  • Hadziosmanovic, M., Lloyn, S., Bjørn, A., Paquin, R., Mengis, N. and Matthews, H. D. (2022) Using cumulative carbon budgets and corporate carbon disclosure to inform ambitious corporate emissions targets and long-term mitigation pathways. Journal of Industrial Ecology, 1-13.
  • Matthews, H. D., Zickfeld, K., Dickau, M., MacIsaac, A., Mathesius, S., Nzotungicimpaye, C.-M. and Luers, A. (2022) Temporary nature-based carbon removal can lower peak warming in a well-below 2°C scenario. Communications Earth and Environment, 3, 1-8.
  • Bjørn, A., Lloyd, S. and Matthews, H. D. (2022) Reply to Comment on ‘From the Paris Agreement to corporate climate commitments: Evaluation of seven methods for setting “science-based” emission targets’. Environmental Research Letters, 17, 038001.
  • Martin, M. A. et al. (2021) Ten new insights in climate science 2021 – a horizon scan. Global Sustainability, 4, 1-20. (Matthews, H. D., co-author)
  • Jackson, R. B., Abernathy, S., Canadell, J. G., Cargnello, M., Davis, S. J., Féron, S., Fuss, S., Heyer, A. J., Hong, C., Jones, C. D., Matthews, H. D., O’Connor, F. M., Pisciotta, M., Rhoda, H. M., de Richter, R., Solomon, E. I., Wilcox, J. and Zickfeld, K. (2021) Atmospheric methane removal: a research agenda. Philosophical Transactions of the Royal Society A, 379, 20200454.
  • Reed, G., Gobby, J., Sinclair, R., Ivey, R., and Matthews, H. D. (2021) Indigenizing climate policy in Canada: a critical examination of the Pan-Canadian Framework and the ZéN RoadMap. Frontiers in Sustainable Cities, 3, 644675.
  • Bjørn, A., Lloyd, S. and Matthews, H. D. (2021) From the Paris Agreement to corporate climate commitments: Evaluation of seven methods for setting “science-based” emission targets. Environmental Research Letters, 16, 054019. 
  • Zickfeld, K., Azevedo, D., Mathesius, S., & Matthews, H. D. (2021). Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nature Climate Change. https://doi.org/10.1038/s41558-021-01061-2
  • Damon Matthews, H., Tokarska, K. B., Rogelj, J., Smith, C. J., MacDougall, A. H., Haustein, K., Mengis, N., Sippel, S., Forster, P. M., & Knutti, R. (2021). An integrated approach to quantifying uncertainties in the remaining carbon budget. Communications Earth & Environment2(1). https://doi.org/10.1038/s43247-020-00064-9
  • Bjorn, A., Lloyd, S., & Matthews, D. (2021). From the Paris Agreement to corporate climate commitments: evaluation of seven methods for setting “science-based” emission targets. Environmental Research Letters16(5). https://doi.org/10.1088/1748-9326/abe57b
  • Matthews, H. D, Tokarska, K. B., Rogelj, J., Forster, P., Haustein, K., Smith, C. J., MacDougall, A. H., Mengis, N., Sippel, S. and Knutti, R. (2021) An integrated approach to quantifying uncertainties in the remaining carbon budget. Communications Earth and Environment, 2, 1-11.

  • Matthews, H. D., Tokarska, K. B., Nicholls, Z. R. J., Rogelj, J., Canadell, J. G., Friedlingstein, P., Frölicher, T. L., Forster, P. M., Gillett, N. P., Ilyina, T., Jackson, R. B., Jones, C. D., Koven, C., Knutti, R., MacDougall, A. H., Meinshausen, M., Mengis, N., Séférian, R., and Zickfeld, K. (2020) Opportunities and challenges in using carbon budgets to guide climate policy. Nature Geoscience, 13, 769-779.

  • Mengis, N., Keller, D. P., MacDougall, A., Eby, M., Wright, N., Meissner, K. J., Oschlies, A., Schmittner, A., Matthews, H. D. and Zickfeld, K. Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10). Geoscientific Model Development, 13, 4183-4204.

  • Stewart, B. M., Turner, S. E. and Matthews, H. D. (2020) Global warming impacts on potential future ranges of non-human primate species. Climatic Change, 162, 2301-2318.

  • Mengis, N. and Matthews. H. D. (2020) Non-CO2 forcing changes will likely decrease the remaining carbon budget for 1.5°C. npg Climate and Atmospheric Science, 3, 19.

  • Horen Greenford, D., Crownshaw, T., Lesk, C., Stadler, K. and Matthews, H. D. (2020) Shifting economic activity to service sectors will not reduce global environmental impacts. Environmental Research Letters, 15, 064019.

  • Dickau, M., Guertin, É, Seto, D. and Matthews, H. D. (2020) Projections of declining outdoor skating availability in Montreal due to global warming. Environmental Research Communications, 2, 051001.

  • Mattauch, L., Matthews, H. D., Millar, R., Solomon, S. and Venmans, F. (2020) Steering the climate system: using inertia to lower the cost of policy: Comment, American Economic Review, 110, 1231-1237.

  • Tokarska, K. B., Schleussner, C.-F., Rogelj, J., Stolpe, M., Matthews, H. D., Pfleiferer, P. and Gillett, N. P. (2019) Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy, Nature Geoscience, 12, 964-971.

  • Chavaillaz, Y., Roy, P., Partanen, A.-I., Da Silva, L., Bresson, É, Mengis, N., Chaumont, D. and Matthews, H. D. (2019) Exposure to excessive heat and impacts on labour productivity linked to cumulative CO2 emissions. Scientific Reports, 9, 13711.

  • Matthews, H. D., Zickfeld, K., Knutti, R. and Allen, M. R. (2018) Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets. Environmental Research Letters, 13, 010201.

  • Millar, R. J., Fuglestvedt, J. S., Grubb, M., Rogelj, J., Skeie, R. B., Friedlingstein, P., Forster, P. M., Frame, D., Matthews, H. D. and Allen, M. R. (2017) Emissions budgets and pathways consistent with limiting warming to 1.5°C. Nature Geoscience, 10, 741-747

  • Leduc, M., Matthews, H. D. and De Elia, R. (2016) Regional estimates of the Transient Climate Response to cumulative CO2 Emissions. Nature Climate Change, 6, 474-478.

  • Matthews, H. D. (2016) Quantifying historical carbon and climate debts. Nature Climate Change, 6, 60-64.

  • Gignac, R. and Matthews, H. D. (2015) Allocating a 2°C cumulative carbon budget to countries. Environmental Research Letters, 10, 075004.

  • Matthews, H. D., Graham, T., Keverian, S., Smith, T., Seto, D. and Lamontagne, C. (2014) National contributions to observed global warming. Environmental Research Letters, 9, 014010.

  • Gillett, N. P., Arora, V. K., Matthews, H. D. and Allen, M. R. (2013) Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. Journal of Climate, 26, 6844-6858.

  • Matthews, H. D. and Solomon, S. (2013) Irreversible does not mean unavoidable. Science, 340, 438-439. 

  • Matthews, H. D. and Zickfeld, K. (2012) Climate response to zeroed emissions of greenhouse gases and aerosols. Nature Climate Change, 2, 338—341.

  • Damyanov, N, Matthews, H. D. and Mysak, L. (2012) Observed changes in the outdoor skating season in Canada. Environmental Research Letters, 7, 014028.

  • Matthews, H. D. and Weaver, A. J. (2010) Committed climate warming. Nature Geoscience, 3, 142-143. 

  • Davis, S. J., Caldeira, K. and Matthews, H. D. (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science, 329, 1330-1333. 

  • Matthews, H. D., Gillett, N., Stott, P. and Zickfeld, K. (2009) The proportionality of global warming to cumulative carbon emissions. Nature, 459, 829-832. 

  • Matthews, H. D. and Turner S. E. (2009) Of mongooses and mitigation: Ecological analogues to geoengineering. Environmental Research Letters, 4, 045105.

  • Zickfeld, K., Eby, M., Matthews, H. D. and Weaver, A. J. (2009) Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proceedings of the National Academy of Sciences U.S.A., 106, 16129-16134.

  • Matthews, H. D. and Caldeira, K. (2008) Stabilizing climate requires near-zero emissions. Geophysical Research Letters, L04705.

  • Matthews, H. D. and Caldeira, K. (2007) Transient climate-carbon simulations of planetary geoengineering. Proceedings of the National Academy of Sciences, U.S.A., 104, 9949-9954.

  • Friedlingstein, P. et al. (2006) Climate-carbon cycle feedback analysis, results from the C4MIP model intercomparison. Journal of Climate, 19, 3337-3353. (Matthews, H. D., co-author) 

  • Matthews, H. D. (2005) Decrease of emissions required to stabilize atmospheric CO2 due to positive carbon cycle-climate feedbacks. Geophysical Research Letters, 32, L21707.

  • Matthews, H. D., Eby, M., Weaver, A. J. and Hawkins, B. J. (2005) Primary productivity control of simulated carbon cycle-climate feedbacks. Geophysical Research Letters, 32, L14708.

  • Matthews, H. D., Weaver, A. J. and Meissner, K. J. (2005) Terrestrial carbon cycle dynamics under recent and future climate change. Journal of Climate, 18, 1609-1628.

  • Matthews, H. D., Weaver, A. J., Meissner, K. J., Gillett, N. P. and Eby, M. (2004) Natural and anthropogenic climate change: Incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Climate Dynamics, 22, 461-479.

Took 29 milliseconds
Back to top

© Concordia University